Himalaya: Listen. Learn. Grow.

4.8K Ratings
Open In App
title

Disruptive

Wyss Institute for Biologically Inspired Engineering

1
Followers
0
Plays
Disruptive

Disruptive

Wyss Institute for Biologically Inspired Engineering

1
Followers
0
Plays
OVERVIEWEPISODESYOU MAY ALSO LIKE

Details

About Us

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University use Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. In this podcast series, Terrence McNally speaks directly with Institute researchers, exploring what motivates them and how they envision our future as it might be impacted by their disruptive technologies.

Latest Episodes

Disruptive: 3D Bioprinting

There are roughly 120,000 people in the United States on waiting lists for live-saving organ transplants, with only about 30,000 transplants happening every year. To address this great challenge of organ shortages, a team at the Wyss Institute led by Core Faculty member Jennifer Lewis, Sc.D., is developing a method for 3D bioprinting organ tissues with requisite vasculature for eventual organ transplant. In this episode of Disruptive, Jennifer Lewis is joined by Wyss Institute Research Associate Mark Skylar-Scott, Ph.D., and former Wyss Institute Postdoctoral Fellow Kimberly Homan, Ph.D., to talk about the current status of their work, challenges they face, and the next steps in their path to 3D bioprint human organs.

--2019 SEP 18
Comments
Disruptive: 3D Bioprinting

Disruptive: Accelerating Diagnostics

In this episode of Disruptive, David Walt, Wyss Core Faculty member, discusses his lessons learned from founding successful biotech companies and how he incorporates translation-minded thinking early on into his current diagnostic research in his labs at the Wyss Institute and the Brigham and Women’s Hospital. Walt and collaborators are inventing new diagnostic tools to allow clinicians to better understand and treat some of the most pressing healthcare problems.

--2019 AUG 22
Comments
Disruptive: Accelerating Diagnostics

Disruptive: Soft Robotics for Deep Sea Exploration

In this episode of Disruptive, Rob Wood, a roboticist and Core Faculty member at the Wyss Institute, and David Gruber, a marine biologist at Baruch College, discuss a chance encounter that led them to develop soft robotic tools that enable a new, non-invasive approach to interacting with deep ocean life.

--2018 OCT 13
Comments
Disruptive: Soft Robotics for Deep Sea Exploration

Disruptive: Art Advances Science

In this episode of Disruptive, Wyss Institute Founding Director Don Ingber and Staff Scientist Charles Reilly discuss their process creating The Beginning, a short film inspired by Star Wars, to better communicate science to the public…and how they made a scientific discovery along the way. To make The Beginning, film industry visual effects and animation tools were used to merge scientific data from different disciplines, which enabled their team to create more accurate depictions and predictions of the natural world than what could otherwise be achieved. The team is now exploring how to use this approach to rational drug design and understanding the molecular mechanisms of disease.

--2017 DEC 21
Comments
Disruptive: Art Advances Science

Disruptive: Cancer Vaccine and Immuno-Materials

Immunotherapy – treatment that uses the body’s own immune system to help fight disease – has groundbreaking and life-saving implications. In an effort to make immunotherapy more effective, Wyss Institute researches are developing new immuno-materials, which help modulate immune cells to treat or diagnose disease.

--2017 OCT 24
Comments
Disruptive: Cancer Vaccine and Immuno-Materials

Disruptive: Sports Genomics

With 100 trillion cells in the human body, bacteria outnumber our own human cells 2 to 1. These bacteria make up one’s microbiome, and particularly bacteria in our guts affect all our key organ functions. They play a role in our health, development and wellness, including endurance, recovery and mental aptitude. In this episode of Disruptive, Wyss Core Faculty member George Church and Wyss Postdoctoral Fellow Jonathan Scheiman discuss collecting and sequencing gut bacteria of elite athletes to produce customized probiotics - and the potential that these probiotics could give recipients access to some of the biological advantages that make those athletes elite.

--2017 MAR 24
Comments
Disruptive: Sports Genomics

Disruptive: Mechanotherapeutics – From Drugs to Wearables

Mechanobiology reveals insights into how the body’s physical forces and mechanics impact development, physiological health, and prevention and treatment of disease. The emerging field of Mechanotherapeutics leverages these insights towards the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways as a core part of their mechanism of action. In this episode of Disruptive, Wyss Core Faculty members Don Ingber, Dave Mooney, and Conor Walsh discuss the latest directions in Mechanotherapeutics. Along with leading researchers from around the globe, representing diverse disciplines, Ingber, Mooney, and Walsh presented at the Wyss Institute's 7th annual symposium. Speakers provided numerous examples of how mechanics are being harnessed in ways that can transform the future of medicine – from drugs to wearables.

59 min2016 SEP 30
Comments
Disruptive: Mechanotherapeutics – From Drugs to Wearables

Disruptive: Fluorescent In Situ Sequencing

Developed at the Wyss, FISSEQ (fluorescent in situ sequencing) is a spatial gene sequencing technology that reads and visualizes the three-dimensional coordinates of RNA and mRNAs – the working copies of genes – within whole cells and tissues. FISSEQ affords insights into biological complexity that until now have not been possible. In this episode of Disruptive, Wyss Core Faculty member George Church, Wyss Senior Staff Scientist Rich Terry, and former Wyss Entrepreneur-in-Residence Shawn Marcell discuss FISSEQ's development and translational potential, which could be used to advance the development of diagnostics and discovery of new drug targets.

47 min2016 SEP 28
Comments
Disruptive: Fluorescent In Situ Sequencing

Disruptive: Putting Biofilms to Work

Biofilms are commonly known as the slime-producing bacterial communities sitting on stones in streams, dirty pipes and drains, or dental plaque. However, Wyss Core Faculty member Neel Joshi is putting to work the very properties that make biofilms effective nuisances or threats in our daily lives. In this episode of Disruptive, Joshi and postdoctoral fellow Anna Duraj-Thatte discuss the development of a novel protein engineering system called BIND, Biofilm-Integrated Nanofiber Display, which uses biofilms to help clean up polluted rivers, manufacture pharmaceutical products, and fabricate new textiles.

54 min2016 SEP 12
Comments
Disruptive: Putting Biofilms to Work

Disruptive: Rapid, Low Cost Detection of Zika & Future Pandemics

The rapid emergence of the Zika virus on the world stage calls for a detection system that is just as quick. In this episode of Disruptive, Wyss Core Faculty member and MIT professor Jim Collins and University of Toronto Assistant Professor Keith Pardee discuss how they developed a low cost, paper-based diagnostic platform that can rapidly detect the Zika virus. The full team, comprising of researchers from several institutions, also developed a workflow that will enable them to use this same platform to respond to future pandemics. In response to an emerging outbreak, a custom tailored diagnostic system could potentially be ready for use in the field within one week.

53 min2016 JUN 22
Comments
Disruptive: Rapid, Low Cost Detection of Zika & Future Pandemics

Latest Episodes

Disruptive: 3D Bioprinting

There are roughly 120,000 people in the United States on waiting lists for live-saving organ transplants, with only about 30,000 transplants happening every year. To address this great challenge of organ shortages, a team at the Wyss Institute led by Core Faculty member Jennifer Lewis, Sc.D., is developing a method for 3D bioprinting organ tissues with requisite vasculature for eventual organ transplant. In this episode of Disruptive, Jennifer Lewis is joined by Wyss Institute Research Associate Mark Skylar-Scott, Ph.D., and former Wyss Institute Postdoctoral Fellow Kimberly Homan, Ph.D., to talk about the current status of their work, challenges they face, and the next steps in their path to 3D bioprint human organs.

--2019 SEP 18
Comments
Disruptive: 3D Bioprinting

Disruptive: Accelerating Diagnostics

In this episode of Disruptive, David Walt, Wyss Core Faculty member, discusses his lessons learned from founding successful biotech companies and how he incorporates translation-minded thinking early on into his current diagnostic research in his labs at the Wyss Institute and the Brigham and Women’s Hospital. Walt and collaborators are inventing new diagnostic tools to allow clinicians to better understand and treat some of the most pressing healthcare problems.

--2019 AUG 22
Comments
Disruptive: Accelerating Diagnostics

Disruptive: Soft Robotics for Deep Sea Exploration

In this episode of Disruptive, Rob Wood, a roboticist and Core Faculty member at the Wyss Institute, and David Gruber, a marine biologist at Baruch College, discuss a chance encounter that led them to develop soft robotic tools that enable a new, non-invasive approach to interacting with deep ocean life.

--2018 OCT 13
Comments
Disruptive: Soft Robotics for Deep Sea Exploration

Disruptive: Art Advances Science

In this episode of Disruptive, Wyss Institute Founding Director Don Ingber and Staff Scientist Charles Reilly discuss their process creating The Beginning, a short film inspired by Star Wars, to better communicate science to the public…and how they made a scientific discovery along the way. To make The Beginning, film industry visual effects and animation tools were used to merge scientific data from different disciplines, which enabled their team to create more accurate depictions and predictions of the natural world than what could otherwise be achieved. The team is now exploring how to use this approach to rational drug design and understanding the molecular mechanisms of disease.

--2017 DEC 21
Comments
Disruptive: Art Advances Science

Disruptive: Cancer Vaccine and Immuno-Materials

Immunotherapy – treatment that uses the body’s own immune system to help fight disease – has groundbreaking and life-saving implications. In an effort to make immunotherapy more effective, Wyss Institute researches are developing new immuno-materials, which help modulate immune cells to treat or diagnose disease.

--2017 OCT 24
Comments
Disruptive: Cancer Vaccine and Immuno-Materials

Disruptive: Sports Genomics

With 100 trillion cells in the human body, bacteria outnumber our own human cells 2 to 1. These bacteria make up one’s microbiome, and particularly bacteria in our guts affect all our key organ functions. They play a role in our health, development and wellness, including endurance, recovery and mental aptitude. In this episode of Disruptive, Wyss Core Faculty member George Church and Wyss Postdoctoral Fellow Jonathan Scheiman discuss collecting and sequencing gut bacteria of elite athletes to produce customized probiotics - and the potential that these probiotics could give recipients access to some of the biological advantages that make those athletes elite.

--2017 MAR 24
Comments
Disruptive: Sports Genomics

Disruptive: Mechanotherapeutics – From Drugs to Wearables

Mechanobiology reveals insights into how the body’s physical forces and mechanics impact development, physiological health, and prevention and treatment of disease. The emerging field of Mechanotherapeutics leverages these insights towards the development of new types of pharmaceuticals, drug delivery systems, engineered tissues, and wearable therapeutic devices that leverage physical forces or target mechanical signaling pathways as a core part of their mechanism of action. In this episode of Disruptive, Wyss Core Faculty members Don Ingber, Dave Mooney, and Conor Walsh discuss the latest directions in Mechanotherapeutics. Along with leading researchers from around the globe, representing diverse disciplines, Ingber, Mooney, and Walsh presented at the Wyss Institute's 7th annual symposium. Speakers provided numerous examples of how mechanics are being harnessed in ways that can transform the future of medicine – from drugs to wearables.

59 min2016 SEP 30
Comments
Disruptive: Mechanotherapeutics – From Drugs to Wearables

Disruptive: Fluorescent In Situ Sequencing

Developed at the Wyss, FISSEQ (fluorescent in situ sequencing) is a spatial gene sequencing technology that reads and visualizes the three-dimensional coordinates of RNA and mRNAs – the working copies of genes – within whole cells and tissues. FISSEQ affords insights into biological complexity that until now have not been possible. In this episode of Disruptive, Wyss Core Faculty member George Church, Wyss Senior Staff Scientist Rich Terry, and former Wyss Entrepreneur-in-Residence Shawn Marcell discuss FISSEQ's development and translational potential, which could be used to advance the development of diagnostics and discovery of new drug targets.

47 min2016 SEP 28
Comments
Disruptive: Fluorescent In Situ Sequencing

Disruptive: Putting Biofilms to Work

Biofilms are commonly known as the slime-producing bacterial communities sitting on stones in streams, dirty pipes and drains, or dental plaque. However, Wyss Core Faculty member Neel Joshi is putting to work the very properties that make biofilms effective nuisances or threats in our daily lives. In this episode of Disruptive, Joshi and postdoctoral fellow Anna Duraj-Thatte discuss the development of a novel protein engineering system called BIND, Biofilm-Integrated Nanofiber Display, which uses biofilms to help clean up polluted rivers, manufacture pharmaceutical products, and fabricate new textiles.

54 min2016 SEP 12
Comments
Disruptive: Putting Biofilms to Work

Disruptive: Rapid, Low Cost Detection of Zika & Future Pandemics

The rapid emergence of the Zika virus on the world stage calls for a detection system that is just as quick. In this episode of Disruptive, Wyss Core Faculty member and MIT professor Jim Collins and University of Toronto Assistant Professor Keith Pardee discuss how they developed a low cost, paper-based diagnostic platform that can rapidly detect the Zika virus. The full team, comprising of researchers from several institutions, also developed a workflow that will enable them to use this same platform to respond to future pandemics. In response to an emerging outbreak, a custom tailored diagnostic system could potentially be ready for use in the field within one week.

53 min2016 JUN 22
Comments
Disruptive: Rapid, Low Cost Detection of Zika & Future Pandemics
success toast
Welcome to Himalaya LearningClick below to download our app for better listening experience.Download App